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Abstract. We have developed a software
library, LibFeature, that greatly simplifies
the task of extracting feature vectors from
raw data. The instructions for computing
feature vectors from the input data are
written in a high-level language, which can
be interpreted in real-time, but because the
language is deterministic, it can be exe-
cuted on many feature vectors in parallel,
resulting in performance comparable to ef-
ficient C code. We describe the capabil-
ities of LibFeature, the Feature Descrip-
tion Language (FDL), the internal archi-
tecture and optimizations, and then show
some benchmarks of its performance, while
using realistic examples of constructing fea-
tures from scientific image and time-series
data throughout.

1 Introduction

When applying a machine learning or data mining
algorithm to a new data set, it is often the case that
the majority of the researcher’s time is spent writing
code to parse the data set and manipulate it into a
form that can be used by the algorithm. Many such
algorithms expect data to be in the form of feature
vectors, each of which contains all of the informa-
tion that the algorithm has available about one input
example. For scientific and engineering data sets, fea-
ture vectors are typically composed of all real num-
bers representing measurements such as the image
intensity at a particular pixel, or the electrical cur-
rent of an instrument at a particular time. Assuming
that these values are already available in data files of
a known format, various operations might need to be
done in order to construct feature vectors from the
raw data, including:

1. Combining data from multiple files or multiple
tables, for example if each band of a multispectral
imager is stored in a separate array

2. Changing the units or normalizing values so that
all elements in each feature vector are approxi-
mately the same magnitude

3. Computing features based on mathematical func-
tions of raw values, for example computing the
Normalized Difference Vegetation Index (NDVI)
given radiance at both red and near-infrared
wavelengths

4. Converting from categorical features to numeri-
cal, for example a sensor that reads OFF, READY,
or ERROR could be represented by the features 0,
1, and 2, or alternatively by the vectors (1,0,0),
(0,1,0), and (0,0,1)

5. Augmenting the feature vector for one particular
time or location with features from neighboring
examples, for context

6. Filtering out feature vectors when one of the fea-
tures is missing or bogus, or alternatively, inter-
polating the value of missing features in that case

We have written a software library, called LibFeature,
that attempts to make this process easier by allow-
ing one to specify the commands to produce a feature
vector in a high-level language. Because LibFeature is
highly optimized and because of the inherent paral-
lelizability of the problem, it is usually possible to use
LibFeature without suffering any speed penalty for
using the additional layer and the parsing of the high-
level language. In fact, LibFeature is often within a
factor of two of a straightforward C implementation,
and thus it is fast enough to be used in near-real-time
systems.

One of the major challenges in designing a soft-
ware library to replace a programming task that is
time-consuming but not difficult, is that the new soft-
ware library must be especially clean, lightweight,
portable, and easy to use, otherwise most people will
find it easier to just reinvent the wheel each time
rather than introduce a dependency on another li-
brary. LibFeature is written in very portable C and
is designed to compile and run on almost any modern



computing platform, including Windows, Mac OS X,
Linux, and any modern Unix system. It is powerful
enough to handle surprisingly complicated calcula-
tions, but the most common tasks are designed to be
as easy as possible.

In this paper, we will describe an outline of the
system and the major capabilities and limitations, in-
troduce the feature description language, show some
examples of many common tasks that can be ac-
complished using LibFeature, discuss how LibFeature
works and some of the optimizations it uses in or-
der to achieve good performance, and finally exam-
ine some benchmarks comparing its performance to
C programs.

2 Related Work

While we are not aware of any previous work to de-
velop a software library specifically for constructing
feature vectors for machine learning and data mining
use, nevertheless many other software programs and
systems served as inspiration or guidance for various
aspects of LibFeature.

The idea of constructing a virtual matrix contain-
ing all of the results and then accessing only individ-
ual rows (feature vectors) as needed was inspired by
the typical use of Structured Query Language (SQL)
[1] within a high-level programming language. A pro-
gram accessing an SQL database will typically use
one function to execute an SQL query, which returns
a handle to a result set (e.g., SQLExecute in the stan-
dard SQL Call Level Interface (SQL/CLI)). The pro-
gram then calls a separate function to access indi-
vidual rows from the result set (e.g., SQLFetch in
SQL/CLI).

The idea of compiling a high-level language into an
intermediate bytecode which can then be executed
more quickly was inspired primarily by Java’s byte-
code [2] [3], which popularized the concept. Finally,
the idea of using a somewhat restricted high-level
language to specify instructions that are executed
quickly on thousands of vectors in parallel is very sim-
ilar to pixel shading languages such as the OpenGL
Shading Language [4], which allows programmers to
write simple programs that are executed directly on
a graphics card to determine the final color of each
pixel in a 3-D rendered image.

3 System Outline

LibFeature is initialized with one or more input ar-
rays, and a Feature Description Language (FDL) pro-
gram specifying how to create the feature vectors.
On initialization, LibFeature parses the program but
does not compute any actual feature vectors, but in-
stead returns a wirtual matriz of feature vectors. For
example, if you have a 50 x 50 image of pixels and
each feature vector has 7 features, the virtual matrix
would be of size 2,500 x 7. (By convention, we as-
sume that the matrix is stored in row-major order, in
which case each feature vector is one row. It is equally
correct, however, to imagine a column-major matrix
where each feature vector is a column; this may be
preferable to Fortran and Matlab users, and in either
case the memory representation is the same.)

From a high-level language, you then query LibFea-
ture for a single row of the virtual matrix (one feature
vector), a set of contiguous rows, or an arbitrary list
of rows. LibFeature is designed to work with very
large virtual matrices that could never be computed
and stored in memory all at once; specifically there
is no limitation that the number of total elements in
the matrix fit in one 32-bit integer. It is quite com-
mon to initialize a virtual matrix with ten trillion
elements, but only actually compute a few thousand
rows randomly scattered throughout the matrix.

Internally, LibFeature works with only floating-
point numbers. While input arrays are allowed to be
any numerical data type, everything is converted to
(your choice of single- or double-precision) floating-
point values first in the resulting feature vector. This
was a reasonable simplifying design decision because
on modern CPUs there is little performance differ-
ence between floating-point and integer calculations.

3.1 Input Arrays and Dimensions

LibFeature can read from arrays in memory, or di-
rectly from binary files on disk. When reading from
disk, you can specify the data type, start offset, endi-
anness, and dimensions, or LibFeature can determine
it automatically from the file’s header (supported
file types currently include BMP, Matlab, NetCDF,
PGM, PPM, and TIFF). (LibFeature can be used
with numerical data stored in ASCII text files, too,
but currently this requires reading the entire file into
memory first, so it does not scale as well.) LibFeature
works with arbitrary multidimensional arrays, but it
requires that you specify which dimensions measure
unique data points (extrinsic dimensions), and which



dimensions measure different fields within the same
data point (intrinsic dimensions). For example, con-
sider a typical color image file with dimensions of
640 x 480 pixels, and three color components (red,
green, and blue) per pixel. The total length of the file
is 640 x 480 x 3 elements, however only 640 x 480 of
these are unique data points. The last dimension is
an intrinsic dimension, because it counts the number
of elements within each pixel (in this case, 3). LibFea-
ture uses the convention of using positive numbers to
denote extrinsic dimensions, and negative numbers
to denote intrinsic dimensions, given in the order of
fastest-moving to slowest-moving.

Most color 640 x 480 images, then, would have di-
mensions (—3, 640, 480) because the file is stored like
this:

640
RGB RGB RGB ... RGB
RGB RGB RGB ... RGB
480 .
RGB RGB RGB ... RGB

Users of scientific image datasets may be used to call-
ing this the Band-Interleaved-by-Pixel (BIP) format.
However, some image files store the red, green, and
blue channels as separate planes, meaning that the
first 640 x 480 elements in the file are for the red
channel, which is followed by all of the green chan-
nel, and then all of the blue. Scientific users would
call this a Band-Sequential (BSQ) file. In this case,
the dimensions that you pass to LibFeature would be
(640,480, —3):

640
RRR... R
480 :
RRR... R
GGG... G
480
GGG... G
BBB...B
480 : -t
BBB...B

The default assumption in LibFeature is that you
want to generate exactly one feature vector per data
point. In section 4.1, we will see how to exclude
some data points from getting turned into feature

vectors, and in section 4.2, we will see how to gen-
erate multiple feature vectors from one data point.
But most of the time there is a direct correspondence.
The concept of extrinsic and intrinsic dimensions and
LibFeature’s convention of using negative indices is a
surprisingly powerful way to represent mappings be-
tween the input array and feature vectors. As a more
complicated example, suppose that you want to take
the same image above, but you only want 320 x 240
feature vectors - one for each 2 x 2 group of pixels. All
that is required is to tell LibFeature that the dimen-
sions of the file are (—3, —2, 320, —2, 240). LibFeature
can infer from this that there will be 320 x 240 feature
vectors, and makes it effortless for you to combine el-
ements from the four pixels in each 2 x 2 group into
each feature vector. Another more common illustra-
tion of the power of this convention is that when using
LibFeature, switching from a BSQ to a BIP input file
often requires changing only one line of code.

3.2 Feature Selection

A common task in machine learning problems is to
start with a large feature set containing dozens or
hundreds of potential features, and use a feature se-
lection algorithm to choose a subset of features out of
these. LibFeature is designed to make this quite easy
and efficient. At any time, you can pass LibFeature
a mask array, specifying which of the columns of the
virtual matrix, corresponding to features, you are in-
terested in. Not only will LibFeature take this into
account, returning only the columns of the virtual
matrix of interest from then on, but it also quickly
re-optimizes its computation to avoid unneeded com-
putations. Thus, there is no penalty for writing an
FDL program to compute every possible feature you
could imagine, and then later selecting the actual fea-
tures you want to use empirically.

4 FDL: The Feature Description
Language

The Feature Description Language (FDL) is used to
specify how each feature vector is constructed from
the input arrays. The syntax is based on Lisp-like
S-expressions, and while it contains many capabili-
ties commonly found in programming languages (in-
cluding many built-in mathematical functions, condi-
tionals, user-defined functions, and macros) it is an
imperative language and purposefully does not in-
clude any flow control. The reason for the lack of



flow control is that the same commands are applied
to thousands of feature vectors in parallel, allowing
for substantial optimizations.

Recall that S-expressions use prefiz notation, where
the name of the function or operator is always the
first element of a parenthesized list, and the argu-
ments follow. For example, the formula to compute
the approximate area of a circle given its radius r
could be expressed as:

(* 3.14159 (*x r r))

An FDL program produces one feature vector given
one particular input data point. The command to
produce a feature is output. To retrieve the value
of an input data point (pixel, in the case of an im-
age), simply use the name of the input array (which
was assigned during initialization) as if it was a func-
tion. Supposing that our RGB (—3 x 640 x 480) image
was named myimage, then the simplest possible FDL
program would be:

(output (myimage))

This program would only result in one feature per
pixel. To output three features, one each for red,
green, and blue, pass an argument to myimage in-
dicating the offset of the element you want:

(output (myimage 0))
(output (myimage 1))
(output (myimage 2))

A 0 is always implied if there is no argument. Note
that the offset can appear in any dimension, not just
the first dimension. So it would be very easy to make
each feature vector contain six features - the RGB
values of the current pixel, and the RGB values of
the pixel above and to the left of that one:

(output (myimage O O 0))
(output (myimage 1 0O 0))
(output (myimage 2 O 0))
(output (myimage O -1 -1))
(output (myimage 1 -1 -1))
(output (myimage 2 -1 -1))

Note that the order of the offsets corresponds to the
order of the dimensions: the first offset is relative to
the fastest-moving dimension, and so on. Finally, note
that when an offset takes you out of the bounds of an
image, LibFeature replaces those features with NaN
(not-a-number). It is easy to simply eliminate any
feature vectors that have any NaNs in them later.

FDL lets you create variables using the set com-
mand, and it also comes with most standard mathe-
matical functions. Here’s a more complicated exam-
ple, then, that outputs the three features per pixel,
but normalizes them so that they always sum to 1:

(set red (myimage 0))

(set green (myimage 1))

(set blue (myimage 2))

(set sum (+ red green blue))
(output (/ red sum))
(output (/ green sum))
(output (/ blue sum))

This works as expected, unless the red, green, and
blue values happen to all be 0. LibFeature will prop-
erly return NaNs when this happens, but if you would
prefer to output zeros instead, use a conditional: (if
expr true-value false-value)

(set red (myimage 0))

(set green (myimage 1))

(set blue (myimage 2))

(set sum (+ red green blue))

(output (if (== sum 0) O (/ red sum)))
(output (if (== sum 0) O (/ green sum)))
(output (if (== sum 0) O (/ blue sum)))

Note that like C, Java, Perl, etc., Libfeature uses a
double-equals (==) to test for equality.

As a final example, here is an FDL program that
averages the pixel values over a 3 x 3 region. This
will introduce a for loop. Even though FDL does
not have any loops that execute a different number
of times depending on the status of real-time calcu-
lations, it does include constructs that allow loops
that execute a fixed number of times. There are more
variations, but the simplest syntax for a for loop
is (for wariable (seq start stop) command [com-
mands...]), where seq is a built-in function that
returns a list of elements to be iterated over, from
start to stop, inclusive. Here’s the code:

(set red 0)

(set green 0)

(set blue 0)

(for i (seq -1 1)

(for j (seq -1 1)

(set red (+ red (myimage 0 i j)))
(set green (+ green (myimage 1 i j)))
(set blue (+ blue (myimage 2 i j)))))

(output (/ red 9))

(output (/ green 9))

(output (/ blue 9))



4.1 Validation

In the most recent example FDL program above, one
problem is that for all of the pixels along the edges
of the image, the 3 x 3 neighborhood extends outside
the image bounds, resulting in NaNs. One way to
solve this would be to change the FDL code so that
it only sums the values if they are not NaN. How-
ever, sometimes it might make more sense to simply
exclude those pixels from becoming feature vectors.
So for our 640 x 480 image, we would only end up with
638 x 478 feature vectors. In LibFeature this can be
done using the require command. When the argu-
ment to require evaluates to false, the entire feature
vector is marked as invalid. (Then at runtime, the
user can choose to extract all feature vectors in a
given range, or only the valid feature vectors in that
range.) To test if a value is not NaN, you can use
the finite function. Here is the above program with
validation:

(set red 0)

(set green 0)

(set blue 0)

(for i (seq -1 1)

(for j (seq -1 1)

(set red (+ red (myimage 0 i j)))
(set green (+ green (myimage 1 i j)))
(set blue (+ blue (myimage 2 i j)))))

(require (finite red))

(require (finite green))

(require (finite blue))

(output (/ red 9))

(output (/ green 9))

(output (/ blue 9))

Note that it would have worked equally well to put
the require inside of the for loop. When there are a
lot of feature vectors that will be marked as invalid,
it is usually fastest to do the validation as early as
possible, because LibFeature can stop computing the
feature vector as soon as it is marked invalid. When
most vectors will be valid, it’s best to execute the
require command as few times as possible.

4.2 Variations

One way to cut down on overfitting in machine learn-
ing problems is to jitter the input, turning each input
point into multiple feature vectors, each one offset by
a small amount. LibFeature makes it easy to have one
input point result in multiple feature vectors. Simply

pass an initial argument to the output and require
commands indicating the 0-based index of the feature
vector to be output. Each different feature vector is
then called one wariation. Here’s a simple FDL pro-
gram that outputs two feature vectors per pixel: one
vector is the original pixel, and the other is a darker
version of the same pixel:

(set red (myimage 0))
(set green (myimage 1))

(set blue (myimage 2))
(output 0 red)

(output 0 green)

(output 0 blue)

(output 1 (¥ 0.9 red))
(output 1 (x 0.9 green))
(output 1 (* 0.9 blue))

4.3 Multiple input arrays

In all of the examples above, we have been assuming
that LibFeature took just a single input array. How-
ever, LibFeature was designed to work with multiple
inputs. There are two common ways that multiple
inputs are used. The first way is when the data for
a single image or other dataset is already stored in
multiple files. For example, a color image might be
stored as three separate files named myimage.red,
myimage.green, and myimage.blue. In this case, you
would initialize LibFeature with all three arrays and
give them different names. Since the dimensions of
all of the files are the same, LibFeature would auto-
matically align them and generate only one set of
feature vectors. The second way that multiple in-
puts can be used is when you want to concatenate
feature vectors from multiple, independent files. If
you initialize LibFeature with multiple input files
but give them all the same name, LibFeature will
process feature vectors from the files consecutively.
So if you had two images, one 640 x 480 and one
800 x 600, LibFeature would return a virtual matrix
with 640 - 480 + 800 - 600 = 787,200 rows. This is
particularly useful for training machine learning al-
gorithms on a random subset of vectors. Rather than
computing feature vectors for every pixel in hundreds
of images, simply initialize LibFeature with all of the
images, get one virtual matrix, and then retrieve ran-
dom rows from that matrix until training has con-
verged.



4.4 Labels

Training a supervised classifier requires a class label
for every feature vector. While it would be possible to
simply denote the last element of each feature vector
as the class label, in practice it is often convenient to
have the labels available separately. LibFeature pro-
vides a special mechanism to output a single label
associated with each vector, using the label_output
command.

5 Limitations and workarounds

While FDL is powerful enough to do many computa-
tions and generate surprisingly complex feature vec-
tors (see section 7.2), there are certainly several types
of features that FDL is not adept at expressing. In
particular, FDL assumes that each feature vector can
be generated independently and deterministically. As
a simple example, there is no way in FDL to specify
that a particular feature is to be normalized, because
this would require scanning through the entire in-
put first. One solution is to use LibFeature in two
passes: In the first pass, LibFeature can be used to
scan the input files and return vectors containing the
values to be normalized. The program can then com-
pute the normalization coefficients, and call LibFea-
ture a second time with these coefficients in the FDL.
As another example, it is common to compute the
wavelet decomposition of an image to derive texture
features, but FDL is not designed for transformations
that operate on an entire image at once. In this case,
it is best to use another program to preprocess in-
put images and generate transformed images. LibFea-
ture can still be useful for generating feature vectors
from these transformed inputs, though, to combine
the untransformed and transformed inputs with dif-
ferent weights.

6 Inside LibFeature

In this section, we will examine how FDL programs
are converted to an internal representation and ex-
ecuted to produce the feature vectors. Readers who
are only interested in using LibFeature as a black box
may want to skip directly to section 7 or 8. So as to
illustrate the diversity of problems for which LibFea-
ture is applicable, we will switch from using an image
data set as the main example to a time-series analy-
sis problem. Suppose that your data contains several
million readings taken at periodic intervals from some

scientific instrument. To make things more interest-
ing, also suppose that the data is somewhat noisy,
and you want to smooth it out using a very simple
convolution filter: every point will be replaced with
the mean of the values within a certain neighborhood
centered at that point. Here’s an FDL program that
computes a feature vector consisting of each value
and the mean of its temporal neighborhood, suppos-
ing that the input file is named sensor_input:

(set nborhood 2)

(set len (+ 1 (* 2 nborhood)))

(for i (seq (- 0 nborhood) nborhood)
(append a (sensor_input i)))

(set psum (+ a))

(output O (sensor_input 0))

(output 0 (/ psum len))

When LibFeature parses this FDL program, it in-
terprets each S-expression in order, building up its
internal data structures. Every expression it encoun-
ters turns into a command, where some commands
use references to previous commands as parameters.
Note that set does not result in a command, but in-
stead adds an entry to a symbol table, allowing you to
refer to the result of a particular expression by name.
Here is a representation of the commands that are
generated when the FDL program above is parsed:

v[0] = 2;

v[1] = 5;

v[2] = array("sensor_input", -2);

v[3] = array("sensor_input", -1);

v[4] = array("sensor_input", 0);

v[5] = array("sensor_input", 1);

v[6] = array("sensor_input", 2);

v[7] = sum(v[2], vI[3], v[4], v[5]1, vI[6]);
v[8] = array("sensor_input", 0);

v[9] = v[7] / vI[1];

This representation is meant to give you an idea
of how the particular feature vector described above
could be computed using a temporary array v[]. The
array v[] is analogous to register on a processor. In-
ternally, LibFeature represents these commands us-
ing a bytecode, but the information contained is the
same. In this particular case, after the nine commands
are finished for each input point, the outputs are in
v[8] and v[9].

6.1

Note that there is a little bit of redundancy in the
sequence of commands shown above. The first value,

Optimizations



v[0]=2 (which came from nborhood) is never actu-
ally used. Also, v[4] and v[8] are identical. LibFea-
ture performs some optimizations on its command se-
quence before executing it. These optimizations are
very similar to optimizations performed by modern
compilers, but because there is no flow control, they
are all relatively straightforward, and in fact all of the
optimizations run in time O(nlogn) (where n is the
number of commands). The optimizations performed
by LibFeature include:

1. Constant Propagation: Expressions that return
constant values are replaced with the result of
that expression. This was already seen in the
above command sequence, because the expres-
sion (+ 1 (* 2 nborhood)) was replaced with
the result, 5, in a single step.

2. Identity Reduction: Computations that involve
multiplying by one or adding zero are eliminated.
This encourages users to write code with lots of
tunable parameters, since an additive parameter
can simply be set to 0 to eliminate it.

3. Common Subexpression Elimination: Commands
that are duplicates of earlier commands are elim-
inated.

4. Dead Code Elimination: Commands which are
never used are eliminated.

After optimization, the command sequence looks like
this:

v[0] = 5;

v[1] = array("sensor_input", -2);

v[2] = array("sensor_input", -1);

v[3] = array("sensor_input");

v[4] = array("sensor_input", 1);

v[5] = array("sensor_input", 2);

v[6] = sum(v[1], v[2], v[3], v[4], v[5]);
v[7] = v[6] / v[0];

The outputs are now in v[3] and v[7].

6.2 Execution

In the simplest case, when LibFeature is comput-
ing just a single feature vector, the execution model
is quite simple: it executes the commands in the
bytecode on a temporary array (v[] in the example
above), and then copies the lines from the array corre-
sponding to actual features into the feature vector at
the end. LibFeature is much more efficient, however,

when it is given the opportunity to compute multi-
ple feature vectors in parallel. Every command op-
erates on many feature vectors simultaneously. This
vectorization allows the overhead of interpreting the
program to be minimized, and LibFeature can start
approaching the speed of C code.

For example, suppose that the first few numbers in
our sensor_input data happen to be the digits of 7:
[3,1,4,1,5,9]. In executing the commands to gener-
ate the first four feature vectors, LibFeature would
fill in a matrix with the following values:

Feature Vectors
Command 1l 2 3| 4
v[0] = 5 5| 5| 5| 5
v[l] = array(-2); NaN|NaN| 3| 1
v[2] = array(-1); NaN| 3] 1| 4
v[3] = array(0); 3] 1 4] 1
v[4] = array(1); 1| 4 1] 5
v[5] = array(2); 4/ 1| 5/ 9
v[6] = sum(v[1], ..., v[5]);|NaN|NaN| 14| 20
v[7] = v[6] / v[0]; NaN|NaN|2.8[4.0

Note that since LibFeature cannot index negative el-
ements in the input array, it replaces these values
with NaN. After all of the computations are finished,
LibFeature still needs to copy the rows corresponding
to output features to the completed feature vectors
in memory. When multiple feature vectors are com-
puted at once, individual features of the same feature
vector are never contiguous, so the extra copy is al-
ways required. While this does take some extra time,
it is negligible compared to the time that is saved by
being able to compute each of the rows of the tempo-
rary matrix all at once, making use of the fact that
the elements of each row are consecutive in mem-
ory. For example, the inner loop of the code which
computes the division command in the last step is
actually something like this:

for(i=0; i<len; i++) {
*out = *inl / *in2;
out++;
inl++;
in2++;

}

In practice, as many as 64 or 128 feature vectors
are usually computed at once, and modern C com-
pilers are able to make this loop extremely efficient.
By vectorizing all of these computations (always do-
ing one step of many feature vectors at once), we



can minimize the overhead of LibFeature. Further-
more, LibFeature takes advantage of vector instruc-
tions such as SSE on x86 chips, or AltiVec on Pow-
erPC chips, to make these inner loops run even faster.
Using these instructions for many common arithmetic
operations speeds up LibFeature by 25% overall in
typical usage.

6.3 Multithreading

Since many scientific workstations have dual proces-
sors (and other modern CPUs simulate multiple pro-
cessors using hyperthreading), LibFeature is designed
to transparently take advantage of these processors
by using two threads for computation.

In cases where all of the input data is to be loaded,
using two threads is trivial: one thread loads the
first half of the data, and the other thread loads the
second half. However, LibFeature allows for valida-
tion of individual feature vectors (using the require
statement in FDL), which complicates matters sig-
nificantly. Since it is unknown exactly how many fea-
ture vectors will be generated, the two threads must
communicate frequently in order to write their fea-
ture vectors to the same array without leaving any
gaps (which would require costly memory moving
later, negating the benefit of both threads). Pipes
are used both for thread synchronization and com-
munication. The speedup when using two threads on
a dual-processor machine is typically 1.5x, though it
can be as high as 1.9x for some computationally in-
tensive programs.

7 Benchmarks

LibFeature has been designed to provide no perfor-
mance penalty in spite of the fact that it interprets its
commands. The following benchmarks demonstrate
how closely this goal has been achieved.

7.1 Image features

Consider a simple problem where we wish to extract
two features from a grayscale 1600 x 1200 PGM im-
age: the intensity of each pixel, and the statistical
variance of an m x m neighborhood of each pixel.
To keep the neighborhood symmetrical, suppose n =
2-radius+1 for some radius > 0. Here is an example
of straightforward C code to implement this feature
extraction:

void get_features(FILE xfp,
float *features, /* output */
int radius,
int width, int height)

{
uint8 *input = (uint8 *)malloc(width * height);
float *p = features;
int i, j, k;
int len = (1+(radius*2))*(1+(radius*2));
fread(input, 1, width * height, fp);
for(i=0; i<width * height; i++) {
float sum = 0;
float sumsq = 0;
float var;
for(j=-radius; j<=radius; j++)
for (k=-radius; k<=radius; k++) {
int index = i + j + (k*width);
if (index >= 0 &&
index < width * height) {
float v = (float)input[index];
sum += v;
sumsq += vV * v;
}
}
var = (sumsq - ((sum * sum) / len)) / len;
*xp++ = (float)input[i];
*p++ = var;
}
}

Now here is the same code, implemented in FDL:

(set width (+ 1 (* 2 radius)))

(set len (* width width))

(for i (seq (- O radius) radius)
(for j (seq (- O radius) radius)

(set v (image i j))

(append arrayl v)

(append array2 (x v v))))

suml (+ arrayil))

sum2 (+ array?2))

center (image))

(set varl (- sum2 (/ (x suml suml) len)))

(set var (/ varl len))

(output center)

(output var)

(set
(set
(set

It requires at most five lines of C code to ex-
tract feature vectors from an image given the FDL
program above. The LibFeature solution is more
compact than the C code, and significantly more
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Fig. 1. Benchmark results show that for this particular problem, LibFeature is comparable in speed to straightforward
C code when a single processor is used, and somewhat faster when two processors are used.

flexible. To show that there is also no performance
penalty, we ran the C code against LibFeature on two
different scientific workstations, for several different
radii. The following times are measured in seconds:

Xeon/3.0 GHz | G5/2.0 GHz
Radius|  C|LibFeature| C|LibFeature
0] 0.10 0.13| 0.24 0.20
1/ 0.23 0.23| 0.69 0.62
2] 0.44 0.41| 1.47 1.24
31 0.85 0.75] 2.63 2.22
4| 1.27 1.16| 4.15 3.48
50 1.71 1.71] 5.93 5.12

Many modern scientific workstations have dual
processors. While it is uncommon for a programmer
to write multithreaded code for something as simple
as feature extraction, LibFeature can take advantage
of multiple processors safely and without any extra
work on the part of the programmer. While this can
introduce extra overhead for small easy problems, in
most cases this allows LibFeature to run significantly
faster than ordinary C code:

Dual Xeon/3.0 GHz|Dual G5/2.0 GHz
Radius|] C LibFeature| C| LibFeature
0] 0.10 0.21| 0.24 0.43

1] 0.23 0.24| 0.69 0.44

2] 0.44 0.36] 1.47 0.79

31 0.85 0.56] 2.63 1.30

4] 1.27 0.83] 4.15 1.99

50 1.71 1.30] 5.93 2.83

7.2 FFT

While FDL is not a complete programming language
(it does not have any flow control), it is nevertheless
powerful enough to compute many complicated
algorithms. As an example of this, consider the Fast
Fourier Transform (FFT) [5], commonly used to
extract frequency features from time-series data.
Suppose that you have a million time points, and
for every point you wish to create a feature vector
containing the Fourier Transform of the n points
centered at that point. For simplicity assume that
n is a power of two and that we are computing
the complex FFT. We implemented a general
power-of-two complex FFT in only 46 lines of FDL
code, using a very straightforward nonrecursive
algorithm. We benchmarked it against FFTW 3.0.1
[6] [7], widely regarded as the one of the fastest
FFT implementations available for any computing
platform. We tested them both in single-precision
mode without making use of multiple processors;
the times below are in microseconds, per FFT, when
computing at least 100,000 FFTs in a row.

Xeon/3.0 GHz G5/2.0 GHz
FFT SizelFFTW |LibFeatureFFTW|LibFeature
16| 0.54 0.94/ 0.55 0.66
32| 1.19 2.00 1.00 1.46
64| 2.11 4.63| 1.85 3.43
128| 4.71 12.15| 4.54 8.43




7.3 Analysis of benchmark results

While it is not necessarily unexpected that LibFea-
ture can be more efficient than straightforward C
code when using two processors, this does not explain
how it matches and sometimes beats the performance
of C code even when using a single processor, as seen
above. Contributing to LibFeature’s efficiency:

1. Cache efficiency: The C code in section 7.1 skips
through memory in order to retrieve the values
for each feature vector, resulting in inefficient use
of the processor’s L1 cache. LibFeature typically
copies 64 contiguous values at a time from the
input array, directly to a row in the temporary
matrix.

2. Vector instructions: On both x86 and PowerPC
processors, LibFeature uses vectorized addition,
multiplication, and division, which allows it to
operate on four values at once.

3. Memory mapping: Instead of loading the file
into memory in a single fread command (which
can take some time to complete), LibFeature
memory-maps the file, which allows the compu-
tation to begin on the first few bytes of the file
while the rest is still being loaded.

It is not surprising that FFTW is faster than
LibFeature; it has been extensively tuned and under-
gone several major revisions and has essentially no
overhead. The fact that LibFeature is only a factor of
2-3 slower than FFTW, given only 46 lines of high-
level FDL code, is impressive and serves as valida-
tion of LibFeature’s design and architecture. Note of
course that LibFeature has more overhead and must
be given thousands of FFTs to compute in order to
approach this speed. Also, to be fair, LibFeature con-
sumes vastly more memory than FFTW needs to for
the same task.

8 Conclusions and Future Work

LibFeature is designed to make life easier for the ma-
chine learning or data mining researcher. Instead of
wasting time writing complicated transformations to
construct feature vectors from input data, you can
use LibFeature to do this work for you. By abstract-
ing the feature vector generation from the algorithm,
it becomes easier to change the feature vectors on the

fly; experimenting with new ideas for features thus
requires less effort. Because LibFeature was imple-
mented very carefully with performance in mind, it is
usually possible to use LibFeature and pay no perfor-
mance penalty at all. In fact, in many circumstances,
LibFeature is significantly faster than straightforward
alternatives.

We are making use of LibFeature in several
projects, and many new capabilities are constantly
being added. Some possible new capabilities that we
are considering for the future include better support
for reading numerical data from ASCII text files,
more binary data formats, more language bindings,
dual-pass algorithms for normalized features, integer
features, and efficient random shuffling of vectors.
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10 Software Availability

Information on obtaining LibFeature is available
from the JPL Machine Learning Group web page:
http://ml. jpl.nasa.gov/
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